Wednesday, January 16, 2013

What Is a POJO?

POJO - Plain Old Java Object
A POJO is a Java object that doesn't implement any special interfaces such as those defined by the EJB 2 framework. Martin Fowler, Rebbecca Parsons, and Josh MacKenzie coined the name to give regular Java objects an exciting-sounding name that encouraged developers to use them (www.martinfowler.com/bliki/POJO.html).

To contrast the EJB and POJO approaches consider the following example. Imagine that you worked for a bank and needed to implement a service to transfer money from one bank account to another. If you were using EJB2, your code would most likely consist of a MoneyTransferService stateless session bean that coordinated the transfer of money between the accounts and an Account entity bean that accessed the account data. The problem with this design is that each EJB would be a mixture of business logic and EJB 2 infrastructure code. They would be intimately coupled to the EJB 2 framework. Furthermore, they would be difficult to test without deploying.

By comparison, the POJO version (which is downloadable from www.pojosinaction.com) would look something like Listing 1. The MoneyTransferService and its implementation class define a transfer() method and the Account class maintains a balance and defines debit() and credit() methods. The AccountDAO is the interface for the Data Access Object (DAO) class whose implementation I'll describe later.

As you can see, these are regular Java classes. None of them implement special interfaces or call any framework classes. What's more, the MoneyTransferService doesn't instantiate the AccountDAO directly or look it up using an API such as JNDI. Instead, the AccountDAO is passed as a constructor parameter. This is an example of what is termed dependency injection, which is one of the key enablers for POJO development (www.martinfowler.com/articles/injection.html). In this example, dependency injection decouples the MoneyTransferService from the infrastructure framework. The MoneyTransferService only depends on the AccountDAO interface - not on the framework used to implement the AccountDAO or an API such as JNDI.

You could, of course, simplify the MoneyTransferService by dispensing with the AccountDAO and directly injecting, for example, a Spring HibernateTemplate or an EJB 3 EntityManager. However, I generally prefer to keep my framework-specific data access code separate from my business logic.

The Benefits of POJOs
Decoupling the application code from the infrastructure frameworks is one of the many benefits of using POJOs. They also simplify development because rather than being forced to think about everything - business logic, persistence, transactions, etc. - at once, you can focus instead on one thing at a time. You can design and implement the business logic and then, once that's working, you can deal with persistence and transactions.

POJOs also accelerate development. You can test your business logic outside of the application server and without a database. You don't have to package your code and deploy it in the application server. You also don't have to keep the database schema constantly in sync with the object model or spend time waiting for slow-running database tests to finish. Tests run in a few seconds and development can happen at the speed of thought - or at least as fast as you can type!
Ref:java.sys-con.com

No comments:

Post a Comment